
Available on CMS information server CMS CR -2013/399

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland
Conference Report

05 November 2013 (v2)

Automating the CMS DAQ

Gerry Bauer1), Tomasz Bawej2), Ulf Behrens3), James Branson4), Olivier Chaze2), Sergio Cittolin4), Jose
Antonio Coarasa2), Georgiana-Lavinia Darlea1),Christian Deldicque2), Marc Dobson2), Aymeric Dupont2),
Samim Erhan5), Dominique Gigi2), Frank Glege2), Guillelmo Gomez-Ceballos1), Robert Gomez-Reino2),

Christian Hartl2), Jeroen Hegeman2), Andre Holzner4), Lorenzo Masetti2), Frans Meijers2), Emilio Meschi2),
Remigius K. Mommsen6), Srecko Morovic2,a), Carlos Nunez-Barranco-Fernandez2), Vivian O’Dell6), Luciano
Orsini2),Wojciech Ozga2), Christoph Paus1), Andrea Petrucci2), Marco Pieri4), Attila Racz2), Olivier Raginel1),
Hannes Sakulin2), Matteo Sani4), Christoph Schwick2), Andrei Cristian Spataru2), Benjamin Stieger2),Konstanty

Sumorok1), Jan Veverka1), Christopher Colin Wakefield2), Petr Zejdl2)

Abstract

We present the automation mechanisms that have been added to the Data Acquisition and Run Control
systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the
automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator.
These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve
it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in
sub-detector electronics at high LHC luminosity.

Presented at CHEP2013 Computing in High Energy Physics 2013

1) Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2) CERN, Geneva, Switzerland
3) DESY, Hamburg, Germany
4) University of California, San Diego, San Diego, California, USA
5) University of California, Los Angeles, Los Angeles, California, USA
6) FNAL, Chicago, Illinois, USA
a) Now at Institute Rudjer Boskovic, Zagreb, Croatia

Automating the CMS DAQ

G Bauer1, T Bawej2, U Behrens3, J Branson4, O Chaze2, S Cittolin4, J A Coarasa2,
G-L Darlea1, C Deldicque2, M Dobson2, A Dupont2, S Erhan5, D Gigi2, F Glege2,
G Gomez-Ceballos1, R Gomez-Reino2, C Hartl2, J Hegeman2, A Holzner4,
L Masetti2, F Meijers2, E Meschi2, R K Mommsen6, S Morovic2,a, C Nunez-
Barranco-Fernandez2, V O'Dell6, L Orsini2, W Ozga2, C Paus1, A Petrucci2,
M Pieri4, A Racz2, O Raginel1, H Sakulin2,7, M Sani4, C Schwick2, A C Spataru2,
B Stieger2, K Sumorok1, J Veverka1, C C Wakefield2 and P Zejdl2
1 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
2 CERN, Geneva, Switzerland;
3 DESY, Hamburg, Germany;
4 University of California, San Diego, San Diego, California, USA;
5 University of California, Los Angeles, Los Angeles, California, USA;
6 FNAL, Chicago, Illinois, USA;
a also at Institute Rudjer Boskovic, Zagreb, Croatia

E-mail: Hannes.Sakulin@cern.ch

Abstract. We present the automation mechanisms that have been added to the Data
Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment
during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error
recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to
maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of
Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics
at high LHC luminosity.

1. Introduction
Given the high costs of constructing and operating CERN’s Large Hadron Collider and its four
experiments, and given the competition in the race to make discoveries, high data taking efficiency in
the operation of the experiments has been of utmost importance. Operating the experiments 24/7 over
a good part of the year meant that the experiments no longer could be operated by the experts who
designed them but by members of the collaboration. Operational procedures thus had to be simplified
and automated wherever possible. During Run 1 of the LHC, between 2009 and 2012 the
instantaneous luminosity has been ramped up by several orders of magnitude, leading not only to
important discoveries but also to more difficult operating conditions due to a higher radiation dose
delivered to the on-detector electronics. In the Compact Muon Solenoid (CMS) [1] experiment,
starting from the fall of 2011, some of the sub-detector electronics have been suffering from single-

7 To whom any correspondence should be addressed.

event upsets blocking the data acquisition as often as several times per LHC fill. Recovery from these
single-event upsets had to be automated to limit the impact on data taking efficiency.

2. Online System Overview
An overview of the CMS online-systems is shown in figure 1. All applications controlling custom
hardware or handling the data flow—in the trigger system [2], sub-system readout systems and the
central DAQ system [3]—are implemented in C++ within the XDAQ [4] framework. XDAQ provides
standardized access to VME/PCI/µTCA hardware, powerful transport protocols, XML-based
configuration and control through the Simple Object Access Protocol (SOAP) [5]. The hierarchic
control structure of the DAQ and trigger systems is implemented in Java within the Run Control [6]
framework. The Run Control framework runs as a web application in a set of Apache Tomcat servers.
The individual control nodes (Function Managers), which are dynamically loaded into the web
application, control a group of child resources and summarize their state to the parent. Using the
framework API, Function Managers define a state machine, a set of parameters, and event handlers
written in Java. Communication between Function Managers is based on Web Services. Through the
top-level control node (Level-0), the DAQ operator controls the trigger system, the sub-detector
readout systems, the central DAQ system including the High Level Trigger (HLT) and the Data
Quality Monitoring system. Monitoring data as well as errors and alarms from XDAQ applications
and Run Control Function Managers are collected using the XDAQ Monitoring and Alarming
System (XMAS) [7] and made available to clients through Live Access Servers.
In parallel the Detector Control System (DCS) [8] controls all infrastructure such as low and high
voltages or gas flows. DCS is implemented using the Joint Operations and Control
Project (JCOP) framework defined at CERN, which is based on the Siemens WinCC OA platform and
the State Management Interface SMI++ [9]. DCS defines a parallel control hierarchy operated by a
separate operator. DCS interfaces with the LHC control system through the Data Interchange
Protocol (DIP).

Figure 1. Overview of the CMS online systems.

3. Automating the Online Systems
Automation features have been added to the system gradually over Run 1 of the LHC as knowledge
about the operation was gained and as new requirements and failure scenarios emerged.

3.1 Principles
In both the XDAQ and the Run Control frameworks, tasks can be automated using framework
functionality and C++ or Java, respectively. The guiding principle for automation in the CMS DAQ
was to implement it as local as possible i.e. at the lowest hierarchic level. This has the advantage that
the knowledge about system details stays encapsulated. Furthermore this distributed approach has
allows for automatic tasks to be performed in parallel. Only in cases where hardware failure requires
the system structure to be recomputed, automation is implemented external to the XDAQ and Run
Control frameworks using an external expert system (see Section 4).

3.2 Automation in XDAQ
Automation at the XDAQ level can make use of framework functionalities but also of low-level
operating system features such as signals. For example, in the High Level Trigger, in order to reduce
configuration time and memory footprint on a multi-core system, a master event processor is started
and configured and then forks child processes that perform the actual event processing in parallel. In
case of a crash of the reconstruction code in one of the child processes, the master event processor
automatically forks a new child process.

3.3 Automation in Run Control
In the Run Control system, Function Managers receive asynchronous notifications about state changes
of their child nodes. Child nodes may also send parameters to their parent nodes. Automation is
implemented in custom event handlers that are activated upon receipt of a notification from a child
node or upon receipt of a command from the parent node.

3.3.1 Automation at the local level in Run Control
An example at the local level is the exclusion of crashed processes from the control, which is activated
upon a notification from the Job Control service, a service that starts and monitors processes in CMS.
By excluding processes from control, runs can still be stopped and started when non-vital components
in the central DAQ have become unavailable. Another example at the local level is the recovery from
a failure to drain the central DAQ when stopping the run. If one of the detector front-ends has not
delivered all fragments to the central DAQ at the end of the run, some events cannot be built and
fragments remain in the buffers of the central DAQ. This situation may appear in only one of the DAQ
slices (the current DAQ system has 8 independent slices building events). A Function Manager
responsible for the corresponding slice would then detect the situation and perform a recovery action
on that slice, only.

3.3.2 Automation in the top-level control node of Run Control
Several tasks have to be automated in the top-level control node of Run Control as they require
coordination between the trigger system and the sub-system DAQ systems. This concerns mainly the
three areas detailed in the following sub-sections.

3.3.2.1 Automatic actions in response to DCS and LHC state changes
Several state changes in the DCS and LHC require settings to be changed in the sub-detector DAQ
systems and the Trigger system. Some sub-systems need to suppress their payload due to noise when
their detector high voltage is off. Others need to reduce gains or change thresholds when the high
voltage is off. Some links in the trigger system are sensitive to the frequency variation of the LHC
clock while the LHC is ramping up its magnets and therefore need to be disabled during LHC ramp.

Initially, whenever a relevant state change happened in the DCS or the LHC—and there are many such
state changes in the preparation of a physics run—the DAQ operator manually needed to start a new
run with new settings. It was soon realised that this mode of operation was error prone and inefficient.
Starting from 2010, automatic actions were implemented in the top-level control node. Through a
bridge and a new DCS Function Manager, the top-level control node receives asynchronous
notifications about state changes in the DCS or LHC. If a run is on-going upon receipt of such a
notification, a new run section is created: the run is automatically paused and the new DCS and LHC
states are passed to the relevant sub-systems before resuming the run. The DAQ operator can thus start
a run, long before ‘stable beams’ are declared by the LHC—usually this is done at ‘flat top’, just after
the LHC magnets have been ramped. Automatic actions in the DCS system then ramp up high
voltages as appropriate and the DAQ system follows by automatically creating new run sections.

3.3.2.2 Automatic recovery from soft errors
As the LHC continued to increase the instantaneous luminosity, more and more cases of ‘soft errors’
occurred in the readout electronics of some sub-detectors—mostly in the tracking detectors, which are
closest to the interaction region. In many cases these errors could be traced to single-event upsets in
the electronics due to the high radiation dose incurred. Figure 2 shows how these single-event upsets
occur proportional to the integrated luminosity in the Pixel sub-system. These errors blocked the sub-
system DAQ and required the run to be stopped (30 seconds), a sub-system to be re-configured (~ 2
minutes) and the run to be re-started (15 seconds), incurring a down time of at least 3 minutes in the
most optimistic case (shifter very alert and fast, no subsequent errors). Towards the end of 2011, such
errors occurred several times per LHC fill and it was thus decided to automate recovery. The new soft-
error recovery mechanism is coordinated by the top-level control node, but detection of the error and
recovery are implemented by the corresponding sub-system. Sub-systems notify the top-level control
node by changing their state. The top-level control node then pauses triggers, calls a newly defined
recovery method on the sub-detector, resynchronizes and resumes the run. It is also possible to
preventively call the recovery method of other sub-systems in the shadow. On average, a recovery
from a soft error took 12 seconds in 2012. When compared to the most optimistic manual recovery
time, at least 46 hours of down time were avoided in 2012 by the automatic recovery mechanism. (The
total remaining down time in 2012 was 94 hours.)

Figure 2. Single-event upsets in the Pixel sub-system in 2012.

3.3.2.2 Automatic configuration parameterization
Another area of automation in the top-level control node is the parameterization of the configuration
that has to be performed by the DAQ operator. Initially, many configuration parameters such as one
run key per sub-system, and the High-Level-Trigger configuration had to be selected manually by the
DAQ operator. Additionally, the Trigger operator had to select several keys for the L1 trigger
configuration and the clock source for the experiment. Parameters had to be changed according to
running conditions and had to be synchronized between the Trigger and DAQ systems. Despite good
instructions and well-trained operators this inevitably led to runs being taken with inconsistent trigger
settings. A new combined trigger key was thus introduced during 2010, tying together all
configuration parameters of the L1 and High Level triggers. For each of a number of combined trigger
modes, experts defined a current, consistent set of parameters. The DAQ operator then just needed to
select the correct mode. Additionally, from 2010 the DAQ operator had to select the clock source or
could have it automatically selected by the top-level control nodes based on the LHC beam and
machine modes. During 2012 several sub-systems required that their run keys be changed whenever
the trigger configuration changed. A CMS-wide run mode was thus introduced linking together all
configuration parameters. For each run mode a current, consistent set of parameters is defined by
experts. The DAQ operator then just selects the correct run mode according to the type of run to be
taken. Alternatively the CMS-wide run mode can also be automatically selected by the top-level
control node depending on the LHC beam and machine modes. With this automation in place the
DAQ operator just needs to stop and start runs whenever requested to do so by automatic guidance
built into the top-level control node and after confirming with the shift leader. Automatic cross-checks
also warn the shifter to reconfigure sub-systems if this is required due to LHC clock instabilities or
due to other configuration changes such as the in/exclusion of sub-detectors or front-end drivers.

4. Automation through a central expert system
In 2011, based on the experience gained with operations in 2010, an expert system, the “DAQ
Doctor”, was introduced to aid the shift crew. The DAQ Doctor continuously analyses the monitoring
data of the central DAQ system and the trigger system and correlates information from the different
applications in the DAQ system. It is able to detect anomalies in many system parameters such as: L1
trigger rate, HLT physics stream rate, rate to disk, resynchronization rate, dead-time, back-pressure,
event-builder throughput, HLT farm utilization. Additionally, it detects if applications stop updating
their monitoring data and then checks the status of the corresponding machine in the infrastructure
monitoring. The DAQ Doctor advises the shift crew through text messages, sounds and spoken alerts.
In many cases it provides instructions on further checks to be done by the shift crew or it provides a
solution to a diagnosed problem. One particular problem that plagued central-DAQ on-call experts had
been hardware failure in machines of the central DAQ event builder which required a manual
intervention to black-list the machine and to compute an alternate DAQ configuration avoiding the
affected machine. In order to make recovery as quick and as painless as possible, the tool used to
create DAQ configuration, the DAQ Configurator [10], was first simplified as much as possible. Since
2012 the recovery is completely automated in the DAQ Doctor, which now calls the DAQ
Configurator to recompute the configuration. This feature has avoided several down-times and saved
the on-call experts many hours of sleep.
The DAQ Doctor is based on the high-level scripting language Perl. It consists of a generic framework
and pluggable modules performing the actual analysis. Detection of a high-level problem may trigger
a more detailed analysis. The DAQ Doctor archives all its diagnosis, and also generates separate
archives about sub-system problems. In case of a severe problem it dumps all monitoring data for
further analysis by experts.

5. Data Taking Efficiency
CMS data taking efficiency during stable beam periods provided by the LHC increased from at 91% in
2010 to 93% in 2011 and 95% in 2012 despite frequent single-event upsets since the fall of 2011. This
increase in efficiency was only possible by automating standard operations and error recovery as much
as possible. It should be noted that the availability of the central DAQ system exceeded 99.6% in all
three years of data-taking.

6. Summary and Outlook
We presented the automation mechanisms added to the CMS DAQ system during Run 1 of the LHC.
Most automation is integrated into the XDAQ and Run Control frameworks and is performed as local
as possible. Only recovery from hardware failure, which requires the system structure to be changed,
is performed through an external expert system. The discussed automation features helped to increase
CMS data taking efficiency from 91% to 95% over Run 1 of the LHC.
The automation integrated into the XDAQ and Run Control frameworks has served the experiment
well and will be kept for Run 2. It is planned to extend the soft-error recovery mechanism to recover
from more types of sub-system errors. Due to the major upgrade of the central DAQ system [11-13]
for Run 2, the external expert system will have to undergo major changes. We are currently also
evaluating alternative implementations such as the use of a complex decision logic system.

Acknowledgments
This work was supported in part by the DOE and NSF (USA) and the Marie Curie Program.

References
[1] The CMS Collaboration 1994 CMS Technical Proposal, CERN LHCC 94-38

The CMS Collaboration (Adolphi R et al.) 2008 The CMS Experiment at CERN LHC, JINST 3
S08004 p. 361,

[2] The CMS Collaboration 2000 CMS, The TriDAS Project, Technical Design Report, Volume 1:
The Trigger Systems, CERN/LHCC 2000-38

[3] The CMS Collaboration 2002 CMS, The TriDAS Project, Technical Design Report, Volume 2:
Data Acquisition and High-Level Trigger, CERN/LHCC 2002-26

[4] Bauer G et al. 2010 The CMS data acquisition system software, J. Phys.: Conf. Ser. 219 022011
[5] Box D et al. 2000 Simple Object Access Protocol (SOAP) 1.1, W3C Note
[6] Bauer G et al 2012 First Operational Experience with a High-Energy Physics Run Control

System based on Web Technologies, IEEE Trans. Nucl. Sci. 59 4 1597-1604
[7] Bauer G et al. 2012 Distributed error and alarm processing in the CMS data acquisition system

J. Phys.: Conf. Ser. 396 012038
[8] Bauer G et al. 2012 Status of the CMS Detector Control System J. Phys.: Conf. Ser. 396 012023
[9] Gaspar C, Franek B 1997 SMI++ - object oriented framework for designing control systems for

HEP experiments, presented at CHEP’97 - Int. Conf. Computing High Energy Physics,
Berlin, Germany, April 7-11, 1997

[10] Bauer G et al. 2010, Dynamic configuration of the CMS data acquisition system, J. Phys.: Conf.
Ser. 219 022003, 2010

[11] Bauer G et al., The new CMS DAQ system for LHC operation after 2014 (DAQ2), in these
proceedings

[12] Bauer G et al., 10Gbps TCP/IP streams from the FPGA for High Energy Physics, in these
proceedings

[13] Bauer G et al., Prototype of a File-Based High-Level Trigger in CMS, in these proceedings

